4,440 research outputs found

    Thermostatic expansion valve improved by dual pneumatic modulation

    Get PDF
    Addition of a secondary pneumatic modulation input improves the standard devices used on thermostatic expansion valves. The valves normally meter incoming refrigerant flow through an orifice valve controlled by a valve-actuating diaphragm

    An Investigation into the Geometry of Seyfert Galaxies

    Get PDF
    We present a new method for the statistical investigation into the distributions of the angle beta between the radio axis and the normal to the galactic disk for a sample of Seyfert galaxies. We discuss how further observations of the sample galaxies can strengthen the conclusions. Our data are consistent with the hypothesis that AGN jets are oriented randomly in space, independent of the position of the plane of the galaxy. By making the simple assumption that the Standard Model of AGN holds, with a universal opening angle of the thick torus of phi_c, we demonstrate a statistical method to obtain an estimate of phi_c. Our data are not consistent with the simple-minded idea that Seyfert 1s and Seyfert 2s are differentiated solely by whether or not our line of sight lies within some fixed angle of the jet axis. Our result is significant on the 2 sigma level and can thus be considered only suggestive, not conclusive. A complete sample of Seyfert galaxies selected on an isotropic property is required to obtain a conclusive result.Comment: 13 pages, Tex, 5 Postscript figures. Accepted Ap

    Malaria in the Taveta area of Kenya and Tanzania.V. Transimision Eight Years After the Spraying Period

    Get PDF

    The Shape of an Accretion Disc in a Misaligned Black Hole Binary

    Full text link
    We model the overall shape of an accretion disc in a semi-detached binary system in which mass is transfered on to a spinning black hole the spin axis of which is misaligned with the orbital rotation axis. We assume the disc is in a steady state. Its outer regions are subject to differential precession caused by tidal torques of the companion star. These tend to align the outer parts of the disc with the orbital plane. Its inner regions are subject to differential precession caused by the Lense-Thirring effect. These tend to align the inner parts of the disc with the spin of the black hole. We give full numerical solutions for the shape of the disc for some particular disc parameters. We then show how an analytic approximation to these solutions can be obtained for the case when the disc surface density varies as a power law with radius. These analytic solutions for the shape of the disc are reasonably accurate even for large misalignments and can be simply applied for general disc parameters. They are particularly useful when the numerical solutions would be slow.Comment: Accepted for publication in MNRA

    The evolution of a warped disc around a Kerr black hole

    Full text link
    We consider the evolution of a warped disc around a Kerr black hole, under conditions such that the warp propagates in a wavelike manner. This occurs when the dimensionless effective viscosity, alpha, that damps the warp is less than the characteristic angular semi-thickness, H/R, of the disc. We adopt linearized equations that are valid for warps of sufficiently small amplitude in a Newtonian disc, but also account for the apsidal and nodal precession that occur in the Kerr metric. Through analytical and time-dependent studies, we confirm the results of Demianski & Ivanov, and of Ivanov & Illarionov, that such a disc takes on a characteristic warped shape. The inner part of the disc is not necessarily aligned with the equator of the hole, even in the presence of dissipation. We draw attention to the fact that this might have important implications for the directionality of jets emanating from discs around rotating black holes.Comment: 8 pages, 6 figures, to be published in MNRA

    The alignment of disk and black hole spins in active galactic nuclei

    Full text link
    The inner parts of an accretion disk around a spinning black hole are forced to align with the spin of the hole by the Bardeen-Petterson effect. Assuming that any jet produced by such a system is aligned with the angular momentum of either the hole or the inner disk, this can, in principle provide a mechanism for producing steady jets in AGN whose direction is independent of the angular momentum of the accreted material. However, the torque which aligns the inner disk with the hole, also, by Newton's third law, tends to align the spin of the hole with the outer accretion disk. In this letter, we calculate this alignment timescale for a black hole powering an AGN, and show that it is relatively short. This timescale is typically much less than the derived ages for jets in radio loud AGN, and implies that the jet directions are not in general controlled by the spin of the black hole. We speculate that the jet directions are most likely controlled either by the angular momentum of the accreted material or by the gravitational potential of the host galaxy.Comment: 4 pages, LateX file, accepted for publication in ApJ Letter
    corecore